
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 3, March 2024

49

Comparative Analysis of Normalization Techniques

in Convolutional Neural Networks for Leaf

Counting in Arabidopsis thaliana
[1] Zorana Štaka, [2] Marko Mišić

[1] Faculty of Electrical Engineering, University of East Sarajevo, Bosnia and Herzegovina
[2] School of Electrical Engineering, University of Belgrade, Serbia

Corresponding Author Email: [1] zorana.staka@etf.ues.rs.ba, [2] marko.misic@etf.bg.ac.rs

Abstract— Normalization techniques have been extensively used in deep learning methods to facilitate the learning process.

Normalization decreases the impact of different scales of the input features, improves convergence of the model affected by the changes

of input features or trained weights, and positively affects the generalization and robustness of the model. Three main techniques of

normalization have been used in the open literature for research in the domain of computer vision: Batch, Layer, and Instance

Normalization. New approaches, such as Switchable Normalization, suggest using different normalizers for different normalization

layers in a deep neural network. In this work, we evaluate those four normalization techniques in the context of the computer vision

problem, leaf counting, in the plant Arabidopsis thaliana. The four normalization techniques were evaluated using the popular

evaluation metrics commonly used for leaf counting problem: difference in count, absolute difference in count, accuracy, and mean

square error. The results show that the best models are those using Instance, Layer and Switchable normalization.

Index Terms—deep learning, neural networks, normalization, switchable normalization.

I. INTRODUCTION

Deep learning methods play a key role in many successful

applications of machine learning in the domains of image

segmentation [1], object tracking [2], natural language

processing [3], speech recognition [4], and many others. In

numerous cases, convolutional neural networks (CNN) were

used for such tasks, as they are designed to extract and

classify features from images.

Usually, CNNs are multi-layered neural networks

consisting of convolutional, pooling, normalizing, dropout,

flattening, and fully connected layers [5]. A convolutional

layer is used to extract important features from the input

images. It is usually followed by pooling layers, which are

aimed at decreasing the computational cost by reducing the

size of the convolved feature map. Fully connected layers are

used for classification purposes after the input is converted by

a flattening layer. Different regularization strategies and

layers are used to enhance the performance and learning

process and prevent overfitting, such as weight decay, data

augmentation, normalization, and dropout [6].

Normalization layers are used in CNN architectures to

tackle issues in training, such as stability, optimization

efficiency, and generalization ability [7]. The aim of the

normalization is to transform the input data to use the same

scale, usually between 0 and 1, in order to stabilize the

gradient descent step in training. There are numerous

normalization approaches used in CNNs, such as Batch

Normalization (BN) [8], Instance Normalization (IN) [9], and

Layer Normalization (LN) [10]. Usually, the same

normalizer is used in all normalization layers in the network.

A good general overview of such techniques can be found in

[6][7].

However, recent studies [11][12] showed that different

normalizers can be used in different normalization layers.

Moreover, it is shown that the choice of normalizer can be

learned [11]. In that context, the Switchable Normalization

(SN) approach [13] has been proposed, which allows to select

different normalizers for different normalization layers of a

deep neural network by calculating various statistics and

learning their importance during training. The authors of [13]

showed good performance of SN for image classification and

object detection computer vision tasks, where a combination

of all BN, IN, and LN is preferred.

Studying plant behavior and traits is important in

contemporary precision agriculture [14]. Computer vision,

pattern recognition, and machine learning are often employed

for such tasks [15]. Following our previous work on the leaf

counting problem [16], we adopted the Switchable

Normalization strategy in our solutions and evaluated it using

several datasets from the CVPPP 2017 challenge based on the

Arabidopsis thaliana plant, which is a frequently studied

plant in the leaf counting context. The main objective of the

study was to compare the impact of different normalization

techniques on the generalization and performance of the

model for the leaf counting task.

The rest of the paper is structured as follows: In the second

section, we give an overview of the different normalization

methods used in computer vision tasks with convolutional

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 3, March 2024

50

neural networks. The third section describes our datasets and

methods and presents details on how switchable

normalization is implemented for a leaf counting task. The

results of the study are presented in the fourth section, along

with the discussion. The final section concludes the paper

with directions for future work.

II. RELATED WORK

The general model of the normalization layer shared

between BN, LN, and IN can be expressed with the following

equation:

Fig. 1. Different normalization methods and their domains of

operation representing a 4D tensor, consisting of N samples,

C channels, height H, and width W [17].

�̂� = 𝛾
𝑥 − 𝜇

√𝜎2 + 𝜀
+ 𝛽

where 𝑥 and �̂� are pixel values before and after

normalization, 𝜇 and 𝜎 are a mean and a standard deviation,

and 𝛾 and 𝛽 are a scale and a shift parameter, while 𝜀 is a

small constant to ensure numerical stability. While BN, IN,

and LN share the same equation, they use different sets of

pixels to calculate the mean and standard deviation [13]. On

the 4D tensor feature map, Fig. 1 illustrates how mean and

standard deviation are calculated, as well as the way pixel

values after normalization are derived [17]. The remainder of

this section includes describing the three most prominent

normalization approaches used in CNNs in modern deep

neural networks, and in addition to that, the concepts of the

Switchable Normalization technique are explained.

A. Batch Normalization

Batch Normalization is one of the most commonly used

techniques in deep neural networks. It was proposed by Ioffe

and Szegedy [8] to solve the problem of internal covariate

shift during the learning process through the stochastic

gradient descent method. It is shown that the training process

can be affected by changes in the distribution of input data in

deeper layers of the network. The input of deeper layers is

affected by the parameters of all previous layers. For that

reason, small changes in input distribution tend to become

larger as the network gets deeper, affecting performance.

BN is performed between the layers of the given CNN on

mini-batches of data of the defined size. The features are

normalized based on the mean and variance in the

mini-batch, subtracting the mean value and dividing the

feature by its mini-batch standard deviation. In that way, all

features have zero mean and unit variance, leading to a more

stable and efficient learning process. The statistics (mean and

variance) are calculated differently during training and

inference; throughout the training, mini-batch statistics are

used, whereas population statistics are applied during

inference. Also, while training, it is important to keep track of

the moving mean and moving variance, which will be later

used in the inference.

The main problem associated with Batch Normalization is

the choice of mini-batch size. Smaller mini-batch sizes are

generally avoided, as they might lead to inaccurate

calculations of the mean and variance, leading to errors [17].

On the other hand, larger mini-batches lead to

implementation problems, especially on the GPUs, as they

tend to be overly memory-consuming.

B. Layer Normalization

A similar idea from the BN is used in the Layer

Normalization technique [10]. However, the LN technique

computes mean and variance from all the summed inputs to

the neurons in a layer on a single training sample rather than

across the samples for each feature represented in a

mini-batch, as shown in Fig. 1.

LN is performed in exactly the same way during training

and inference phases. Also, it can be used regardless of the

mini-batch size, which is beneficial for applications where

batch sizes may vary. The most important advantage over BN

is that LN can be more easily integrated with recurrent neural

networks (RNN), which are used in popular architectures

such as LSTM and ResNet.

C. Instance Normalization

Instance Normalization [9] can be applied both in training

and inference phases, similar to Layer Normalization. The

main difference is that instance normalization is performed

across each channel in each training sample instead of

normalizing across input features in a single training sample.

If normalization is performed over a group of channels for

each training sample, it is called Group Normalization (GN)

[17], as shown in Fig. 1.

The main motivation for IN comes from the problem of

image stylization, i.e., transferring a style from one image to

another. In many real-life applications, the variability of

visual styles, including contrast, object textures, lighting

conditions, and filter effects, deeply affects image

classification [12]. In some more advanced applications, IN

is combined with BN to explicitly manipulate style

information from the images. That approach is called

Batch-Instance Normalization (BIN) [12], and it is able to

selectively learn which image styles to normalize and which

ones to keep during the training process for object

classification and style transfer tasks.

D. Switchable Normalization

The first idea that different normalizers can be used in

different normalization layers in CNN was presented in [13].

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 3, March 2024

51

The authors solved a learning-to-normalize problem by

computing statistics employed in the normalization process

(means and variances) from three different sources:

mini-batches, layers, and channels. SN switches between

those three normalization strategies depending on the learned

importance weights for each layer of the network. For the

whole mathematical model, one can refer to [13].

It is shown that SN is robust for different deep learning

tasks, where BN is preferred for image classification and

object detection, LN is more often used in the box and mask

methods, and IN is used for image style transfer [13]. It is

also observed that IN is preferred at the beginning of the

network, BN is more often used in the middle layers, and LN

is used more frequently towards the end. Also, SN is more

robust to mini-batch size, which is a problem for BN in the

case of smaller mini-batches. The authors have proven the

superiority of the approach for several key applications and

datasets in their subsequent study [11]. Those include image

classification with the ImageNet dataset and ResNet50

architecture, object detection and instance segmentation in

the COCO dataset, semantic image segmentation and parsing

in the ADE20K and Cityscapes datasets, and video

recognition in the Kinetics dataset.

Fig. 2. Example images from the CVPPP 2017 challenge

Arabidopsis thaliana images from A1, A2, and A4 directory

III. DATASETS AND METHODS

The A1, A2, and A4 directories of the CVPPP 2017

challenge Arabidopsis thaliana images are used as the

training and testing dataset for trained neural networks. In

total, there are 128 images (500 pixels × 530 pixels), 31

images (530 pixels x 565 pixels), and 624 images (441 pixels

x 441 pixels) in the A1, A2, and A4 directory, respectively. In

these images, several challenges are present that make

recognizing and counting leaves a difficult task: a layer of

water that causes reflection in some trays, a changing

background that may contain some other things except the

plant itself, and overlapping leaves as the plant grows that

result in the presence of occlusion. Example images from A1,

A2, and A4 directory are shown in Fig. 2 having 11, 4 and 28

leaves respectively.

In addition to the images in the folders, the ground truth of

leaf count is also provided. To get an appropriate overview of

how well one model is good for predicting the number of

leaves, one cannot look only at the accuracy (the exact

number of images where the number of leaves was correctly

predicted). The difference between the prediction and the

ground truth is also very essential; that is, even if the

prediction is incorrect, it is crucial how far it is from the truth.

For that reason, we use other metrics, such as difference in

count, absolute difference in count, and mean squared error,

in addition to accuracy. Therefore, evaluation metrics used in

this work are difference in count (DiC), absolute difference in

count (|DiC|), accuracy, and Mean Square Error (MSE). A

detailed overview of these metrics can be found in

[16][18][19].

Fig. 3. Shematic diagram of a modified ResNet model for

leaf counting from our previous work [16]

Fig. 4. Shematic diagram of a Conv block [16]

The TensorFlow (version 2.15) Python library was used to

implement neural networks for the leaf counting task. The

neural network architecture was based on a modified ResNet

model that showed best performance in our previous work

[16]. Its schematic diagram is shown in Fig. 3. Model also

encompasses the Identity and Conv blocks, whose schematic

diagrams are given in [16]. Such an architecture results in 52

layers, of which 49 are convolutional layers and three are

dense layers. The following hyperparameters and their

respective values are used: activation function (ReLU), stride

(2x2), learning rate (1e-5), kernel size (1x1, 3x3, 7x7),

optimizer (Adam) and loss function (MSE).

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 3, March 2024

52

The model (including Identity and Conv blocks) uses BN,

IN, LN, or SN in place of all the normalization layers,

resulting in four different versions of the ResNet model

whose performances are compared to each other. Each of

these four different model versions is trained and tested with

batch sizes of 2, 4, 8, 16 and 24, and with a number of epochs

ranging from 10 to 100.

The construction of SN involves computing all the

statistics (mean and variance) for the batch, instance, and

layer normalization, and then utilizing the linear combination

of these to derive the final mean and variance. Switchable

Normalization is implemented as a class inheriting

tf.keras.layers.Layer. The trainable parameters added to the

layer were scale, offset, as well as mean weight and variance

weight (for the above-mentioned linear combinations of

mean and variance). Since BN also needs moving mean and

variance, those are added but are not trainable. The

implementation also takes into account whether the network

is in the state of training or inference, since the mean and

variance of BN are calculated differently in those two cases.

IV. RESULTS AND DISCUSSION

In this section, we provide the results of our analysis. The

versions of ResNet model using different normalization

techniques are compared here in terms of time needed for

training, as well as evaluation metrics DiC, |DiC|, accuracy

and MSE.

Fig. 5. Shematic diagram of a Identity block [16]

Table I Training time of all batch sizes for different

normalization techniques used in the model, rounded to the

nearest second.

N
o

rm
.

tec
h

n
iq

u
e

Batch size

2 4 8 16 24 Average

BN 1303 933 836 897 809 956

IN 1307 960 861 923 831 977

LN 1304 998 931 875 875 997

SN 1389 1064 1050 925 920 1070

Table I gives us an overview of the time required to train

models with the four normalization techniques for all the

batch sizes used (2, 4, 8, 16, and 24). On average, models

with BN require the shortest training time, whereas models

with SN require the longest. This one was expected because

models using SN need to compute all the statistics for BN,

IN, and LN. Models using SN take 6-25% more time to be

trained than models using BN. Models utilizing IN and LN

generally need less time than models using SN and more time

than models using BN, whereas in some certain cases, e.g., a

batch size 16 model using LN is faster than one using BN.

Overall, all models take less than 25 minutes to train, and the

differences between them at these ranges of execution time

are almost negligible.

For the metrics of DiC, |DiC|, accuracy, and MSE, the best

values for different batch sizes were chosen for each of the

normalization techniques and then compared to each other. A

summary of the DiC metric is given in Fig. 6. It can be

observed that the values in the case of using SN fluctuate the

most, while the model employing IN and LN changes the

least, remaining at two units around zero through all the

epochs.

The best value for DiC is zero and is achieved with BN

after 50 epochs for a batch size of 24. This does not imply that

the model’s accuracy on the test set in this case is 100%, but

rather that the overestimation and underestimation of the

number of leaves cancel each other out. This scenario also

does not attain the best accuracy for the BN model, but rather

batch size 16 (where accuracy is 39.74% as opposed to

33.33%). Similarly, a model using LN with a batch size of 2

achieves zero for DiC, and essentially the same reasoning

applies. At the end of the training (after 100 epochs), all the

values are under 1.1 (with IN having the lowest of 0.04 and

LN having the highest of 1.06).

Fig. 6. The results for the DiC across 100 epochs for different

normalization techniques

Fig. 7. The results for the |DiC| metric across 100 epochs for

different normalization techniques

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 3, March 2024

53

Fig. 7 depicts the values of metric |DiC| changing over

epochs for the models with different normalization

techniques. After training for the 100 epochs all the models

have comparable value for |DiC| ranging from 0.81 (IN and

LN) to 0.95 (SN). The best values of |DiC| in case SN and IN

are achieved in case of batch size 8, BN requires 16, while

LN works best in case of 24 images in a batch. For model

with IN the values for |DiC| range from 0.74 (after 90 epochs)

to 1.88 (after 20 epochs). When we consider values for DiC

and |DiC| for IN it can be observed that the model at the

beginning is overestimating the number of leaves, then starts

to underestimate the number of leaves, while also getting

closer to the true number of leaves.

The trend of SN being dominant in the first 50 epochs

when it comes to the accuracy of the model can be observed

in Fig. 8. In the second part of the training performances of

model with SN are decreasing significantly, going from

41.03% (maximum in the first 50 epochs) to even only

15.38% (after 60 epochs) and to 21.79% after the training is

completed. The low accuracy at the very beginning is

observed in case of BN and LN and in the end the models

utilizing BN and IN have the highest accuracy (38.46% for

both). The highest accuracy of 43.59% in all the training

epochs is accomplished with LN (after 70 epochs) and IN

(after 90 epochs). SN has the highest minimum of the four

models for all the epochs, always staying above 15%, while

on the other hand the accuracy of just few percentages can be

observed in models using different normalization techniques

(but at the very beginning of the training process).

Fig. 8. The results for the accuracy metric across 100 epochs

for different normalization techniques

Fig. 9. The results for the MSE metric across 100 epochs for

different normalization techniques

For the metric of MSE the overview is given in Fig. 9. The

lowest value is achieved in case of SN after only 40 epochs,

while the lowest value for BN, IN, and LN are achieved after

80, 90, and 100 epochs respectively. For SN this is achieved

when using only 8 images per batch, while for other the batch

size is larger. In Fig. 9, it can be observed that at the very

beginning (after 10 epochs), BN, IN, and LN have a

significantly larger number for the MSE metric compared to

the later stages of the training process. For SN, the same thing

happens just after 20 epochs.

To provide an overall performance overview for all the

models and all the batch sizes, Table II presents the top 5

models with the highest accuracy, and Table III shows the top

5 models with the lowest MSE.

The highest accuracy on the test set is obtained in the case

of modles using IN, LN, LN, IN, and SN, with batch sizes of

8, 24, 4, 2, and 4, respectively (Table II). The lowest value for

accuracy, only 25.64%, is in the case of BN with two images

per batch, and a batch size of 24 for BN produces only

33.33% accuracy, which is among the lowest. For batch size

16, however, an accuracy of 39.74% is obtained. This is

consistent with the previous remark that BN is affected by the

choice of batch size.

The lowest values for MSE are achieved in models using

SN, IN, LN, IN, and SN with batch sizes of 8, 24, 24, 8, and

16 respectively (Table III). Model with BN and batch size of

2 takes the last place here as well, having an MSE of 4.59.

The obtained results of the four models are consistent with

the results obtained in [16], where only BN was used for

normalization. In the case of BN with a batch size of 8 in

[16], the accuracy of 30.77% is achieved after 50 epochs,

while here in the same case, the accuracy is 32.05% (the MSE

is 1.45 in [16] as opposed to the 1.79 obtained here). From

Table II and Table III, it can be observed that the same model

as one used in [16] but with different normalization

techniques and batch sizes can outperform the model with

BN and a batch.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 3, March 2024

54

Table II Accuracy obtained on the test set for top 5

normalization techniques and batch sizes

Normalization

technique
Batch size Accuracy (%)

IN 8 43.59

LN 24 43.59

LN 4 42.31

IN 2 41.03

SN 4 41.03

Table III MSE values achieved on the test set for top 5

normalization techniques and batch sizes

Normalization technique Batch size MSE

SN 8 1.12

IN 24 1.24

LN 24 1.24

IN 8 1.26

SN 16 1.27

Size of 8. In the context of SN, the corresponding model

shows similar performance in terms of DiC, |DiC|, accuracy,

and MSE. However, it can be noted that accuracy drops after

50 epochs. Similar trends can be observed for other

techniques, as accuracy is not stable over epochs. That effect

should be further investigated in future work.

V. CONCLUSION

The advent of new normalization techniques can lead to

more robust and stable machine learning models with better

generalization. One of the recent ideas is to use different

normalizers for different normalization layers in

convolutional neural networks through a technique called

switchable normalization.

Following our previous work, we tried different

normalization techniques as well as adopted switchable

normalization for the problem of leaf counting in the

Arabidopsis thaliana plant, which is a computer vision

problem from the domain of object detection. Our results

suggest that among the best models are those using Instance,

layer, or Switchable Normalization, placing themselves in

front of the Batch Normalization. However, based on our

experience, we cannot conclude that Switchable

Normalization is always the best option for leaf counting

tasks.

There are several directions for future work, including

training the same models on a larger dataset to account for

differences in plant structure and leaves changing over time,

as well as trying out different models of neural networks to

see how they compare with each other on the task of leaf

counting. Also, one interesting thing would be to try to

generalize the model to be able to count not only the leaves of

Arabidopsis thaliana but some other plants as well.

REFERENCES

[1] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz,

D. Terzopoulos, “Image segmentation using deep learning: A

survey”, IEEE Trans. on pattern analysis and machine

intelligence, vol. 44, no. 7, pp. 3523-3542, 2021.

[2] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R.

Tagliaferri, and F. Herrera, F., “Deep learning in video

multi-object tracking: A survey”, Neurocomp., vol. 381, pp.

61-88, 2021.

[3] D. W. Otter, J. R. Medina, J. K. Kalita, “A survey of the

usages of deep learning for natural language processing”,

IEEE trans. on neural networks and learning systems, vol. 32,

no. 2, pp 604-624, 2020.

[4] M. Malik, M. K. Malik, K. Mehmood, I. Makhdoom,

“Automatic speech recognition: a survey”, Multimed. Tools

and App., vol. 80, pp. 9411-9457, 2021.

[5] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning”,

MIT press, 2016.

[6] R. Moradi, R. Berangi, and B, Minaei, “A survey of

regularization strategies for deep models”, Artif Intell Rev,

vol. 53, pp. 3947–3986, 2020.

[7] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu and L. Shao,

“Normalization Techniques in Training DNNs: Methodology,

Analysis and Application”, IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 45, no. 8, pp. 10173-10196,

Aug. 2023

[8] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating

deep network training by reducing internal covariate shift,”,

ICML, 2015.

[9] D. Ulyanov, A. Vedaldi, and V. Lempitsky. “Instance

normalization: The missing ingredient for fast stylization”,

arXiv:1607.08022, 2016.

[10] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization”,

arXiv:1607.06450, 2016.

[11] P. Luo, Z. Peng, J. Ren, R. Zhang, “Do normalization layers

in a deep ConvNet really need to be distinct?”, arXiv preprint

arXiv:1811.07727, 2018.

[12] H. Nam, H. E. Kim, “Batch-instance normalization for

adaptively style-invariant neural networks”, Advances in

Neural Information Processing Systems, vol. 31, 2018.

[13] P. Luo, J. Ren, Z. Peng, R. Zhang, J. Li, “Differentiable

learning-to-normalize via switchable normalization”. arXiv

preprint arXiv:1806.10779, 2018.

[14] Y. Jiang, C. Li, “Convolutional Neural Networks for

Image-Based High-Throughput Plant Phenotyping: A

Review”, Plant Phenomics, vol. 2020, 2020.

[15] Z. Li, R. Guo, M. Li, Y. Chen, G. Li, “A review of computer

vision technologies for plant phenotyping”, Computers and

Electronics in Agriculture, vol. 176, 105672, 2020.

[16] Z. Štaka, M. Mišić, “Leaf counting in the presence of

occlusion in Arabidopsis thaliana plant using convolutional

neural networks”, Journal of Electronic Imaging, vol. 32, no.

5, 052407-052407, 2023.

[17] Y. Wu, K. He, “Group normalization”, Proceedings of the

European conference on computer vision (ECCV), pp. 3-19,

2018.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 3, March 2024

55

[18] B. Chaudhury et al., “Study on deep convolutional neural

networks for leaf counting,” https://pal.iitpkd.ac.in/static/

pdfs/wspa_chaudhury.pdf (accessed 26-12-2023).

[19] A. Dobrescu, M. Valerio Giuffrida, and S. A. Tsaftaris,

“Leveraging multiple datasets for deep leaf counting,”in Proc.

IEEE Int. Conf. Comput. Vision Workshops, pp. 2072–2079

(2017)

