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Abstract— Normalization techniques have been extensively used in deep learning methods to facilitate the learning process. 

Normalization decreases the impact of different scales of the input features, improves convergence of the model affected by the changes 

of input features or trained weights, and positively affects the generalization and robustness of the model. Three main techniques of 

normalization have been used in the open literature for research in the domain of computer vision: Batch, Layer, and Instance 

Normalization. New approaches, such as Switchable Normalization, suggest using different normalizers for different normalization 

layers in a deep neural network. In this work, we evaluate those four normalization techniques in the context of the computer vision 

problem, leaf counting, in the plant Arabidopsis thaliana. The four normalization techniques were evaluated using the popular 

evaluation metrics commonly used for leaf counting problem: difference in count, absolute difference in count, accuracy, and mean 

square error. The results show that the best models are those using Instance, Layer and Switchable normalization.  

 

Index Terms—deep learning, neural networks, normalization, switchable normalization. 

 

I. INTRODUCTION 

Deep learning methods play a key role in many successful 

applications of machine learning in the domains of image 

segmentation [1], object tracking [2], natural language 

processing [3], speech recognition [4], and many others. In 

numerous cases, convolutional neural networks (CNN) were 

used for such tasks, as they are designed to extract and 

classify features from images. 

Usually, CNNs are multi-layered neural networks 

consisting of convolutional, pooling, normalizing, dropout, 

flattening, and fully connected layers [5]. A convolutional 

layer is used to extract important features from the input 

images. It is usually followed by pooling layers, which are 

aimed at decreasing the computational cost by reducing the 

size of the convolved feature map. Fully connected layers are 

used for classification purposes after the input is converted by 

a flattening layer. Different regularization strategies and 

layers are used to enhance the performance and learning 

process and prevent overfitting, such as weight decay, data 

augmentation, normalization, and dropout [6]. 

Normalization layers are used in CNN architectures to 

tackle issues in training, such as stability, optimization 

efficiency, and generalization ability [7]. The aim of the 

normalization is to transform the input data to use the same 

scale, usually between 0 and 1, in order to stabilize the 

gradient descent step in training. There are numerous 

normalization approaches used in CNNs, such as Batch 

Normalization (BN) [8], Instance Normalization (IN) [9], and 

Layer Normalization (LN) [10]. Usually, the same 

normalizer is used in all normalization layers in the network. 

A good general overview of such techniques can be found in 

[6][7]. 

However, recent studies [11][12] showed that different 

normalizers can be used in different normalization layers. 

Moreover, it is shown that the choice of normalizer can be 

learned [11]. In that context, the Switchable Normalization 

(SN) approach [13] has been proposed, which allows to select 

different normalizers for different normalization layers of a 

deep neural network by calculating various statistics and 

learning their importance during training. The authors of [13] 

showed good performance of SN for image classification and 

object detection computer vision tasks, where a combination 

of all BN, IN, and LN is preferred. 

Studying plant behavior and traits is important in 

contemporary precision agriculture [14]. Computer vision, 

pattern recognition, and machine learning are often employed 

for such tasks [15]. Following our previous work on the leaf 

counting problem [16], we adopted the Switchable 

Normalization strategy in our solutions and evaluated it using 

several datasets from the CVPPP 2017 challenge based on the 

Arabidopsis thaliana plant, which is a frequently studied 

plant in the leaf counting context. The main objective of the 

study was to compare the impact of different normalization 

techniques on the generalization and performance of the 

model for the leaf counting task. 

The rest of the paper is structured as follows: In the second 

section, we give an overview of the different normalization 

methods used in computer vision tasks with convolutional 
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neural networks. The third section describes our datasets and 

methods and presents details on how switchable 

normalization is implemented for a leaf counting task. The 

results of the study are presented in the fourth section, along 

with the discussion. The final section concludes the paper 

with directions for future work. 

II. RELATED WORK 

The general model of the normalization layer shared 

between BN, LN, and IN can be expressed with the following 

equation: 

 
Fig. 1. Different normalization methods and their domains of 

operation  representing a 4D tensor, consisting of N samples, 

C channels, height H, and width W [17]. 

�̂� = 𝛾
𝑥 − 𝜇

√𝜎2 + 𝜀
+ 𝛽 

where 𝑥  and �̂�  are pixel values before and after 

normalization, 𝜇 and 𝜎 are a mean and a standard deviation, 

and 𝛾 and 𝛽 are a scale and a shift parameter, while 𝜀 is a 

small constant to ensure numerical stability. While BN, IN, 

and LN share the same equation, they use different sets of 

pixels to calculate the mean and standard deviation [13]. On 

the 4D tensor feature map, Fig. 1 illustrates how mean and 

standard deviation are calculated, as well as the way pixel 

values after normalization are derived [17]. The remainder of 

this section includes describing the three most prominent 

normalization approaches used in CNNs in modern deep 

neural networks, and in addition to that, the concepts of the 

Switchable Normalization technique are explained. 

A. Batch Normalization 

Batch Normalization is one of the most commonly used 

techniques in deep neural networks. It was proposed by Ioffe 

and Szegedy [8] to solve the problem of internal covariate 

shift during the learning process through the stochastic 

gradient descent method. It is shown that the training process 

can be affected by changes in the distribution of input data in 

deeper layers of the network. The input of deeper layers is 

affected by the parameters of all previous layers. For that 

reason, small changes in input distribution tend to become 

larger as the network gets deeper, affecting performance. 

BN is performed between the layers of the given CNN on 

mini-batches of data of the defined size. The features are 

normalized based on the mean and variance in the 

mini-batch, subtracting the mean value and dividing the 

feature by its mini-batch standard deviation. In that way, all 

features have zero mean and unit variance, leading to a more 

stable and efficient learning process. The statistics (mean and 

variance) are calculated differently during training and 

inference; throughout the training, mini-batch statistics are 

used, whereas population statistics are applied during 

inference. Also, while training, it is important to keep track of 

the moving mean and moving variance, which will be later 

used in the inference. 

The main problem associated with Batch Normalization is 

the choice of mini-batch size. Smaller mini-batch sizes are 

generally avoided, as they might lead to inaccurate 

calculations of the mean and variance, leading to errors [17]. 

On the other hand, larger mini-batches lead to 

implementation problems, especially on the GPUs, as they 

tend to be overly memory-consuming. 

B. Layer Normalization 

A similar idea from the BN is used in the Layer 

Normalization technique [10]. However, the LN technique 

computes mean and variance from all the summed inputs to 

the neurons in a layer on a single training sample rather than 

across the samples for each feature represented in a 

mini-batch, as shown in Fig. 1. 

LN is performed in exactly the same way during training 

and inference phases. Also, it can be used regardless of the 

mini-batch size, which is beneficial for applications where 

batch sizes may vary. The most important advantage over BN 

is that LN can be more easily integrated with recurrent neural 

networks (RNN), which are used in popular architectures 

such as LSTM and ResNet. 

C. Instance Normalization 

Instance Normalization [9] can be applied both in training 

and inference phases, similar to Layer Normalization. The 

main difference is that instance normalization is performed 

across each channel in each training sample instead of 

normalizing across input features in a single training sample. 

If normalization is performed over a group of channels for 

each training sample, it is called Group Normalization (GN) 

[17], as shown in Fig. 1. 

The main motivation for IN comes from the problem of 

image stylization, i.e., transferring a style from one image to 

another. In many real-life applications, the variability of 

visual styles, including contrast, object textures, lighting 

conditions, and filter effects, deeply affects image 

classification [12]. In some more advanced applications, IN 

is combined with BN to explicitly manipulate style 

information from the images. That approach is called 

Batch-Instance Normalization (BIN) [12], and it is able to 

selectively learn which image styles to normalize and which 

ones to keep during the training process for object 

classification and style transfer tasks. 

D. Switchable Normalization 

The first idea that different normalizers can be used in 

different normalization layers in CNN was presented in [13]. 
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The authors solved a learning-to-normalize problem by 

computing statistics employed in the normalization process 

(means and variances) from three different sources: 

mini-batches, layers, and channels. SN switches between 

those three normalization strategies depending on the learned 

importance weights for each layer of the network. For the 

whole mathematical model, one can refer to [13]. 

It is shown that SN is robust for different deep learning 

tasks, where BN is preferred for image classification and 

object detection, LN is more often used in the box and mask 

methods, and IN is used for image style transfer [13]. It is 

also observed that IN is preferred at the beginning of the 

network, BN is more often used in the middle layers, and LN 

is used more frequently towards the end. Also, SN is more 

robust to mini-batch size, which is a problem for BN in the 

case of smaller mini-batches. The authors have proven the 

superiority of the approach for several key applications and 

datasets in their subsequent study [11]. Those include image 

classification with the ImageNet dataset and ResNet50 

architecture, object detection and instance segmentation in 

the COCO dataset, semantic image segmentation and parsing 

in the ADE20K and Cityscapes datasets, and video 

recognition in the Kinetics dataset. 

 
Fig. 2. Example images from the CVPPP 2017 challenge 

Arabidopsis thaliana images from A1, A2, and A4 directory 

III. DATASETS AND METHODS 

The A1, A2, and A4 directories of the CVPPP 2017 

challenge Arabidopsis thaliana images are used as the 

training and testing dataset for trained neural networks. In 

total, there are 128 images (500 pixels × 530 pixels), 31 

images (530 pixels x 565 pixels), and 624 images (441 pixels 

x 441 pixels) in the A1, A2, and A4 directory, respectively. In 

these images, several challenges are present that make 

recognizing and counting leaves a difficult task: a layer of 

water that causes reflection in some trays, a changing 

background that may contain some other things except the 

plant itself, and overlapping leaves as the plant grows that 

result in the presence of occlusion. Example images from A1, 

A2, and A4 directory are shown in Fig. 2 having 11, 4 and 28 

leaves respectively. 

In addition to the images in the folders, the ground truth of 

leaf count is also provided. To get an appropriate overview of 

how well one model is good for predicting the number of 

leaves, one cannot look only at the accuracy (the exact 

number of images where the number of leaves was correctly 

predicted). The difference between the prediction and the 

ground truth is also very essential; that is, even if the 

prediction is incorrect, it is crucial how far it is from the truth. 

For that reason, we use other metrics, such as difference in 

count, absolute difference in count, and mean squared error, 

in addition to accuracy. Therefore, evaluation metrics used in 

this work are difference in count (DiC), absolute difference in 

count (|DiC|), accuracy, and Mean Square Error (MSE). A 

detailed overview of these metrics can be found in 

[16][18][19].  

 
Fig. 3. Shematic diagram of a modified ResNet model for 

leaf counting from our previous work [16] 

Fig. 4. Shematic diagram of a Conv block [16] 

The TensorFlow (version 2.15) Python library was used to 

implement neural networks for the leaf counting task. The 

neural network architecture was based on a modified ResNet 

model that showed best performance in our previous work 

[16]. Its schematic diagram is shown in Fig. 3. Model also 

encompasses the Identity and Conv blocks, whose schematic 

diagrams are given in [16]. Such an architecture results in 52 

layers, of which 49 are convolutional layers and three are 

dense layers. The following hyperparameters and their 

respective values are used: activation function (ReLU), stride 

(2x2), learning rate (1e-5), kernel size (1x1, 3x3, 7x7), 

optimizer (Adam) and loss function (MSE). 
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The model (including Identity and Conv blocks) uses BN, 

IN, LN, or SN in place of all the normalization layers, 

resulting in four different versions of the ResNet model 

whose performances are compared to each other. Each of 

these four different model versions is trained and tested with 

batch sizes of 2, 4, 8, 16 and 24, and with a number of epochs 

ranging from 10 to 100. 

The construction of SN involves computing all the 

statistics (mean and variance) for the batch, instance, and 

layer normalization, and then utilizing the linear combination 

of these to derive the final mean and variance. Switchable 

Normalization is implemented as a class inheriting 

tf.keras.layers.Layer. The trainable parameters added to the 

layer were scale, offset, as well as mean weight and variance 

weight (for the above-mentioned linear combinations of 

mean and variance). Since BN also needs moving mean and 

variance, those are added but are not trainable. The 

implementation also takes into account whether the network 

is in the state of training or inference, since the mean and 

variance of BN are calculated differently in those two cases. 

IV. RESULTS AND DISCUSSION 

In this section, we provide the results of our analysis. The 

versions of ResNet model using different normalization 

techniques are compared here in terms of time needed for 

training, as well as evaluation metrics DiC, |DiC|, accuracy 

and MSE.  

 
Fig. 5. Shematic diagram of a Identity block [16] 

Table I Training time of all batch sizes for different 

normalization techniques used in the model, rounded to the 

nearest second. 
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Batch size 
 

2 4 8 16 24 Average 

BN 1303 933 836 897 809 956 

IN 1307 960 861 923 831 977 

LN 1304 998 931 875 875 997 

SN 1389 1064 1050 925 920 1070 

Table I gives us an overview of the time required to train 

models with the four normalization techniques for all the 

batch sizes used (2, 4, 8, 16, and 24). On average, models 

with BN require the shortest training time, whereas models 

with SN require the longest. This one was expected because 

models using SN need to compute all the statistics for BN, 

IN, and LN. Models using SN take 6-25% more time to be 

trained than models using BN. Models utilizing IN and LN 

generally need less time than models using SN and more time 

than models using BN, whereas in some certain cases, e.g., a 

batch size 16 model using LN is faster than one using BN. 

Overall, all models take less than 25 minutes to train, and the 

differences between them at these ranges of execution time 

are almost negligible. 

For the metrics of DiC, |DiC|, accuracy, and MSE, the best 

values for different batch sizes were chosen for each of the 

normalization techniques and then compared to each other. A 

summary of the DiC metric is given in Fig. 6. It can be 

observed that the values in the case of using SN fluctuate the 

most, while the model employing IN and LN changes the 

least, remaining at two units around zero through all the 

epochs.  

The best value for DiC is zero and is achieved with BN 

after 50 epochs for a batch size of 24. This does not imply that 

the model’s accuracy on the test set in this case is 100%, but 

rather that the overestimation and underestimation of the 

number of leaves cancel each other out. This scenario also 

does not attain the best accuracy for the BN model, but rather 

batch size 16 (where accuracy is 39.74% as opposed to 

33.33%). Similarly, a model using LN with a batch size of 2 

achieves zero for DiC, and essentially the same reasoning 

applies. At the end of the training (after 100 epochs), all the 

values are under 1.1 (with IN having the lowest of 0.04 and 

LN having the highest of 1.06). 

 
Fig. 6. The results for the DiC across 100 epochs for different 

normalization techniques 

 
Fig. 7. The results for the |DiC| metric across 100 epochs for 

different normalization techniques 
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Fig. 7 depicts the values of metric |DiC| changing over 

epochs for the models with different normalization 

techniques. After training for the 100 epochs all the models 

have comparable value for |DiC| ranging from 0.81 (IN and 

LN) to 0.95 (SN). The best values of |DiC| in case SN and IN 

are achieved in case of batch size 8, BN requires 16, while 

LN works best in case of 24 images in a batch. For model 

with IN the values for |DiC| range from 0.74 (after 90 epochs) 

to 1.88 (after 20 epochs). When we consider values for DiC 

and |DiC| for IN it can be observed that the model at the 

beginning is overestimating the number of leaves, then starts 

to underestimate the number of leaves, while also getting 

closer to the true number of leaves.  

The trend of SN being dominant in the first 50 epochs 

when it comes to the accuracy of the model can be observed 

in Fig. 8. In the second part of the training performances of 

model with SN are decreasing significantly, going from 

41.03% (maximum in the first 50 epochs) to even only 

15.38% (after 60 epochs) and to 21.79% after the training is 

completed. The low accuracy at the very beginning is 

observed in case of BN and LN and in the end the models 

utilizing BN and IN have the highest accuracy (38.46% for 

both). The highest accuracy of 43.59% in all the training 

epochs is accomplished with LN (after 70 epochs) and IN 

(after 90 epochs). SN has the highest minimum of the four 

models for all the epochs, always staying above 15%, while 

on the other hand the accuracy of just few percentages can be 

observed in models using different normalization techniques 

(but at the very beginning of the training process).  

 
Fig. 8. The results for the accuracy metric across 100 epochs 

for different normalization techniques 

 
Fig. 9. The results for the MSE metric across 100 epochs for 

different normalization techniques 

For the metric of MSE the overview is given in Fig. 9. The 

lowest value is achieved in case of SN after only 40 epochs, 

while the lowest value for BN, IN, and LN are achieved after 

80, 90, and 100 epochs respectively. For SN this is achieved 

when using only 8 images per batch, while for other the batch 

size is larger. In Fig. 9, it can be observed that at the very 

beginning (after 10 epochs), BN, IN, and LN have a 

significantly larger number for the MSE metric compared to 

the later stages of the training process. For SN, the same thing 

happens just after 20 epochs. 

To provide an overall performance overview for all the 

models and all the batch sizes, Table II presents the top 5 

models with the highest accuracy, and Table III shows the top 

5 models with the lowest MSE. 

The highest accuracy on the test set is obtained in the case 

of modles using IN, LN, LN, IN, and SN, with batch sizes of 

8, 24, 4, 2, and 4, respectively (Table II). The lowest value for 

accuracy, only 25.64%, is in the case of BN with two images 

per batch, and a batch size of 24 for BN produces only 

33.33% accuracy, which is among the lowest. For batch size 

16, however, an accuracy of 39.74% is obtained. This is 

consistent with the previous remark that BN is affected by the 

choice of batch size. 

The lowest values for MSE are achieved in models using 

SN, IN, LN, IN, and SN with batch sizes of 8, 24, 24, 8, and 

16 respectively (Table III). Model with BN and batch size of 

2 takes the last place here as well, having an MSE of 4.59. 

The obtained results of the four models are consistent with 

the results obtained in [16], where only BN was used for 

normalization. In the case of BN with a batch size of 8 in 

[16], the accuracy of 30.77% is achieved after 50 epochs, 

while here in the same case, the accuracy is 32.05% (the MSE 

is 1.45 in [16] as opposed to the 1.79 obtained here). From 

Table II and Table III, it can be observed that the same model 

as one used in [16] but with different normalization 

techniques and batch sizes can outperform the model with 

BN and a batch. 

 

 

 



    ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE) 

Vol 11, Issue 3, March 2024 

 

54 
 

Table II Accuracy obtained on the test set for top 5 

normalization techniques and batch sizes 

Normalization 

technique 
Batch size Accuracy (%) 

IN 8 43.59 

LN 24 43.59 

LN 4 42.31 

IN 2 41.03 

SN 4 41.03 

Table III MSE values achieved on the test set for top 5 

normalization techniques and batch sizes 

Normalization technique Batch size MSE 

SN 8 1.12 

IN 24 1.24 

LN 24 1.24 

IN 8 1.26 

SN 16 1.27 

Size of 8. In the context of SN, the corresponding model 

shows similar performance in terms of DiC, |DiC|, accuracy, 

and MSE. However, it can be noted that accuracy drops after 

50 epochs. Similar trends can be observed for other 

techniques, as accuracy is not stable over epochs. That effect 

should be further investigated in future work. 

V. CONCLUSION 

The advent of new normalization techniques can lead to 

more robust and stable machine learning models with better 

generalization. One of the recent ideas is to use different 

normalizers for different normalization layers in 

convolutional neural networks through a technique called 

switchable normalization. 

Following our previous work, we tried different 

normalization techniques as well as adopted switchable 

normalization for the problem of leaf counting in the 

Arabidopsis thaliana plant, which is a computer vision 

problem from the domain of object detection. Our results 

suggest that among the best models are those using Instance, 

layer, or Switchable Normalization, placing themselves in 

front of the Batch Normalization. However, based on our 

experience, we cannot conclude that Switchable 

Normalization is always the best option for leaf counting 

tasks. 

There are several directions for future work, including 

training the same models on a larger dataset to account for 

differences in plant structure and leaves changing over time, 

as well as trying out different models of neural networks to 

see how they compare with each other on the task of leaf 

counting. Also, one interesting thing would be to try to 

generalize the model to be able to count not only the leaves of 

Arabidopsis thaliana but some other plants as well. 
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